Polarisation of vegetation: what we know, what we don't know Jouni Peltoniemi, Maria Gritsevich, Teemu Hakala, Eetu Puttonen, Juha Suomalainen

Background

- Polarisation interesting for astronomy and remote sensing
- More used for atmospheric and space applications, less for land surfaces (difficult, enough other sources)
- Large part of land surface remote sensing community totally unaware of polarisation, even physics in general
- Systematic reflectance and scattering measurements with polarisation all too rare
- Only part of observed polarisation features understood and modelled

Bidirectional reflectance factor (BRF)

- Observed reflectance depends on four angles
- R=I/I_Lambert (unidirectional collimated incidence)
- $I(\epsilon,\Phi)=\cos \iota/\pi R(\epsilon,\Phi,\iota,\Phi_0) F_0(\iota,\Phi_0)$
- To model polarisation, **I**=[I,Q,U,V] and **R**= 4*4 matrix
- Degree of linear polarisation I=-Q/I

Theory

- Generally requires solving the single scattering with full polarisation, and 3 D RT with full polarisation.
 - But this is slow, and
 - We don't know enough to model even single scattering with full polarisation
- Often assumed, that
 - multiple scattering scrambles the polarisation directions, and is thus mostly unpolarised
 - most of polarisation comes from the single Fresnel reflection from leaf surface
- This explains the main features, but not perfectly
 - Quite often polarisation predictions completely wrong
 - Too few parameters
- Better models require hard electromagnetics,
 - Work in progress, e.g. SAEMPL project and many other model efforts

Measurements, FIGIFIGO = Finnish Geodetic Institute Field Gonio-spectro-polari-radiometer

- 400-2400 nm
- Glan-Thomson polariser, full spectral range
- 3 Stokes parameters: I, Q, U
 - V under construction
- Full hemisphere
- Unpolarised illumination

How vegetation differs from non-vegetation, Some examples, four cases: grass, lichen, snow, sand

Reflectance (BRF) in 640 nm

Bowl shape, forward and backward scattering

Reflectance in the principal plane, six wavelengths

- More details visible
- Wavelengths differ, but most features remain
- Large
 differences
 between
 species, but
 hard to get
 invertible
 signals

Reflectance spectra, four direction in the principal plane, vegetation certainly differs from non-vegetation

- Spectrum gives very strong signals
- Easy to identify vegetation, and even do basic classification
- Further subclassing and quantitative interpretation still challenging,

(all vegetation quite similarily green, but lichen and some specialities)

The degree of linear polarisation (P=-Q/I=-R_21/R_11) in the principal plane,

Polarised reflectance spectrum (R_21). Spectrally R_21 is smoother than R_11, and follows similar patterns, but some new colour features are possible. Forward Fresnel (flat part)+ something, backward non-Fresnel

Polarisation signal is stronger when the Sun is lower. Grass and lichen at two solar zenith angles:

What did we learn?

- Generally, spectrum is the best way to separate vegetation from non-vegetation, and identify some classes, but limited in further identification
- BRF shape, forward spike, backscattering, give some more signals, not as much as wanted
- Forward polarisation can further aid differentation
 - But alone less useful
- Backward polarisation needs more studies
- We don't understand the spectral behaviour enough

From other research

- Polarisation is sensitive to leaf orientation, useful in monitoring growing phase of e.g. wheat
- Tassels and flowers reduce forward polarisation
- Chlorophyll yields also some amount of circular polarisation
- But otherwise not too many promising ideas

Still don't know

- Some colour effects in forward polarisation
 - Maybe related to surface microstructure
- Polarisation maximum shifted from Brewster angle
 - Just measurement inaccuracy?
 - Multiple scattering?
- Negative backward polarisation
 - What could it tell?
- Actually, only very few samples measured, in uncomparable conditions, we don't really know very much to say anything strong

Some conclusions for polarisation remote sensing

- Observe forward scattering, 80-130 degrees phase angles
- High image rate to catch directional pattern and locate the maximum
- Low spectral resolution enough, 2-10 channels
- Measure, when Sun quite low, zenith angles > 60 degree
- Need clear and stable sky
- Don't rely on polarisation alone, but combine intelligently with spectrometry, goniometry, photogrammetry, lidars

Final conclusions

- Polarisation interesting topic, and can add something to vegetation remote sensing
- Much more modelling needed
 - 3D polarised RT
 - Electromagnetic scattering
 - Leaf structures
- More measurements
 - New samples
 - Systematic variations
 - More complete, all Stokes parameters, full Muller matrices
- Polarisation a good test bench for models

